

seals User Guide

The Suite of Environments for Algorithms that Learn Specifications, or seals, is a toolkit for
evaluating specification learning algorithms, such as reward or imitation learning. The environments
are compatible with Gym [https://github.com/openai/gym/], but are designed to test algorithms
that learn from user data, without requiring a procedurally specified reward function.

There are two types of environments in seals:

	Diagnostic Tasks which test individual facets of algorithm performance in isolation.

	Renovated Environments, adaptations of widely-used benchmarks such as MuJoCo continuous
control tasks to be suitable for specification learning benchmarks. In particular, this
involves removing any side-channel sources of reward information (such as episode boundaries,
the score appearing in the observation, etc) and including all the information needed to
compute the reward in the observation space.

seals is under active development and we intend to add more categories of tasks soon.

User Guide

	Installation Instructions

Environments

	Diagnostic Tasks
	Branching

	EarlyTerm

	InitShift

	LargestSum

	NoisyObs

	Parabola

	ProcGoal

	RiskyPath

	Sort

	Renovated Environments
	Classic Control
	CartPole

	MountainCar

	MuJoCo
	Ant

	HalfCheetah

	Hopper

	Humanoid

	Swimmer

	Walker2d

Common

	Base Environments

	Utilities
	AbsorbAfterDoneWrapper

	AutoResetWrapper

	ObsCastWrapper

	get_gym_max_episode_steps()

	grid_transition_fn()

	make_env_no_wrappers()

	one_hot_encoding()

	sample_distribution()

	Helpers for unit-testing environments

Citing seals

To cite this project in publications:

 @misc{seals,
 author = {Adam Gleave and Pedro Freire and Steven Wang and Sam Toyer},
 title = {{seals}: Suite of Environments for Algorithms that Learn Specifications},
 year = {2020},
 publisher = {GitHub},
 journal = {GitHub repository},
 howpublished = {\url{https://github.com/HumanCompatibleAI/seals}},
}

Indices and tables

	Index

	Module Index

	Search Page

Installation Instructions

To install the latest release from PyPi, run:

pip install seals

We make releases periodically, but if you wish to use the latest version of the code, you can
always install directly from Git master:

pip install git+https://github.com/HumanCompatibleAI/seals.git

seals has optional dependencies needed by some subset of environments. In particular,
to use MuJoCo environments, you will need to install MuJoCo [http://www.mujoco.org/] 1.5
and then run:

pip install seals[mujoco]

You may need to install some other binary dependencies: see the instructions in
Gym [https://github.com/openai/gym] and mujoco-py [https://github.com/openai/mujoco-py]
for further information.

You can also use our Docker image which includes all necessary binary dependencies. You can either
build it from the Dockerfile, or by downloading a pre-built image:

docker pull humancompatibleai/seals:base

Diagnostic Tasks

Diagnostic tasks test individual facets of algorithm performance in isolation.

Branching

Gym ID: seals/Branching-v0

EarlyTerm

Gym ID: seals/EarlyTermPos-v0 and seals/EarlyTermNeg-v0

InitShift

Gym ID: seals/InitShiftTrain-v0 and seals/InitShiftTest-v0seals/EarlyTermPos-v0

LargestSum

Gym ID: seals/LargestSum-v0

NoisyObs

Gym ID: seals/NoisyObs-v0

Parabola

Gym ID: seals/Parabola-v0

ProcGoal

Gym ID: seals/ProcGoal-v0

RiskyPath

Gym ID: seals/RiskyPath-v0

Sort

Gym ID: seals/Sort-v0

Renovated Environments

These environments are adaptations of widely-used reinforcement learning benchmarks from
Gym [https://github.com/openai/gym], modified to be suitable for benchmarking specification
learning algorithms. In particular, we:

	Make episodes fixed length. Since episode termination conditions are often correlated with
reward, variable-length episodes provide a side-channel of reward information that algorithms
can exploit. Critically, episode boundaries do not exist outside of simulation: in the
real-world, a human must often “reset” the RL algorithm [https://www.youtube.com/watch?time_continue=125&v=vw3mGAlsT2U].

Moreover, many algorithms do not properly handle episode termination, and so are
biased [https://arxiv.org/abs/1809.02925] towards shorter or longer episode boundaries.
This confounds evaluation, making some algorithms appear spuriously good or bad depending
on if their bias aligns with the task objective.

For most tasks, we make the episode fixed length simply by removing the early termination
condition. In some environments, such as MountainCar, it does not make sense to continue
after the terminal state: in this case, we make the terminal state an absorbing state that
is repeated until the end of the episode.

	Ensure observations include all information necessary to compute the ground-truth reward
function. For some environments, this has required augmenting the observation space.
We make this modification to make RL and specification learning of comparable difficulty
in these environments. While in general both RL and specification learning may need to
operate in partially observable environments, the observations in these relatively simple
environments were typically engineered to make RL easy: for a fair comparison, we must
therefore also provide reward learning algorithms with sufficient features to recover the
reward.

In the future, we intend to add Atari tasks with the score masked, another reward side-channel.

Classic Control

CartPole

Gym ID: seals/CartPole-v0

MountainCar

Gym ID: seals/MountainCar-v0

MuJoCo

Ant

Gym ID: seals/Ant-v0

HalfCheetah

Gym ID: seals/HalfCheetah-v0

Hopper

Gym ID: seals/Hopper-v0

Humanoid

Gym ID: seals/Humanoid-v0

Swimmer

Gym ID: seals/Swimmer-v0

Walker2d

Gym ID: seals/Walker2d-v0

Base Environments

Utilities

Miscellaneous utilities.

	
class seals.util.AbsorbAfterDoneWrapper(env, absorb_reward=0.0, absorb_obs=None)

	Bases: Wrapper

Transition into absorbing state instead of episode termination.

When the environment being wrapped returns done=True, we return an absorbing
observation. This wrapper always returns done=False.

A convenient way to add absorbing states to environments like MountainCar.

	
__init__(env, absorb_reward=0.0, absorb_obs=None)

	Initialize AbsorbAfterDoneWrapper.

	Parameters

	
	env – The wrapped Env.

	absorb_reward – The reward returned at the absorb state.

	absorb_obs – The observation returned at the absorb state. If None, then
repeat the final observation before absorb.

	
reset(*args, **kwargs)

	Reset the environment.

	
step(action)

	Advance the environment by one step.

This wrapped step() always returns done=False.

After the first done is returned by the underlying Env, we enter an artificial
absorb state.

In this artificial absorb state, we stop calling
self.env.step(action) (i.e. the action argument is entirely ignored) and
we return fixed values for obs, rew, done, and info. The values of obs and
rew depend on initialization arguments. info is always an empty dictionary.

	
class seals.util.AutoResetWrapper(env)

	Bases: Wrapper

Hides done=True and auto-resets at the end of each episode.

	
step(action)

	When done=True, returns done=False instead and automatically resets.

When an automatic reset happens, the observation from reset is returned,
and the overridden observation is stored in
info[“terminal_observation”].

	
class seals.util.ObsCastWrapper(env, dtype)

	Bases: Wrapper

Cast observations to specified dtype.

Some external environments return observations of a different type than the
declared observation space. Where possible, this should be fixed upstream,
but casting can be a viable workaround – especially when the returned
observations are higher resolution than the observation space.

	
__init__(env, dtype)

	Builds ObsCastWrapper.

	Parameters

	
	env – the environment to wrap.

	dtype – the dtype to cast observations to.

	
reset()

	Returns reset observation, cast to self.dtype.

	
step(action)

	Returns (obs, rew, done, info) with obs cast to self.dtype.

	
seals.util.get_gym_max_episode_steps(env_name)

	Get the max_episode_steps attribute associated with a gym Spec.

	Return type

	Optional[int]

	
seals.util.grid_transition_fn(state, action, x_bounds=(-inf, inf), y_bounds=(-inf, inf))

	Returns transition of a deterministic gridworld.

Agent is bounded in the region limited by x_bounds and y_bounds,
ends inclusive.

(0, 0) is interpreted to be top-left corner.

Actions:
0: Right
1: Down
2: Left
3: Up
4: Stay put

	
seals.util.make_env_no_wrappers(env_name, **kwargs)

	Gym sometimes wraps envs in TimeLimit before returning from gym.make().

This helper method builds directly from spec to avoid this wrapper.

	Return type

	Env

	
seals.util.one_hot_encoding(pos, size)

	Returns a 1-D hot encoding of a given position and size.

	Return type

	ndarray

	
seals.util.sample_distribution(p, random)

	Samples an integer with probabilities given by p.

	Return type

	int

Helpers for unit-testing environments

 Python Module Index

 s

 		 	

 		
 s	

 	[image: -]
 	
 seals	

 	
 	
 seals.util	

Index

 _
 | A
 | G
 | M
 | O
 | R
 | S

_

 	
 	__init__() (seals.util.AbsorbAfterDoneWrapper method)

 	(seals.util.ObsCastWrapper method)

A

 	
 	AbsorbAfterDoneWrapper (class in seals.util)

 	
 	AutoResetWrapper (class in seals.util)

G

 	
 	get_gym_max_episode_steps() (in module seals.util)

 	
 	grid_transition_fn() (in module seals.util)

M

 	
 	make_env_no_wrappers() (in module seals.util)

 	
 	
 module

 	seals.util

O

 	
 	ObsCastWrapper (class in seals.util)

 	
 	one_hot_encoding() (in module seals.util)

R

 	
 	reset() (seals.util.AbsorbAfterDoneWrapper method)

 	(seals.util.ObsCastWrapper method)

S

 	
 	sample_distribution() (in module seals.util)

 	
 seals.util

 	module

 	
 	step() (seals.util.AbsorbAfterDoneWrapper method)

 	(seals.util.AutoResetWrapper method)

 	(seals.util.ObsCastWrapper method)

 nav.xhtml

 Table of Contents

 		
 seals User Guide

 		
 Installation Instructions

 		
 Diagnostic Tasks

 		
 Branching

 		
 EarlyTerm

 		
 InitShift

 		
 LargestSum

 		
 NoisyObs

 		
 Parabola

 		
 ProcGoal

 		
 RiskyPath

 		
 Sort

 		
 Renovated Environments

 		
 Classic Control

 		
 CartPole

 		
 MountainCar

 		
 MuJoCo

 		
 Ant

 		
 HalfCheetah

 		
 Hopper

 		
 Humanoid

 		
 Swimmer

 		
 Walker2d

 		
 Base Environments

 		
 Utilities

 		
 AbsorbAfterDoneWrapper

 		
 AbsorbAfterDoneWrapper.__init__()

 		
 AbsorbAfterDoneWrapper.reset()

 		
 AbsorbAfterDoneWrapper.step()

 		
 AutoResetWrapper

 		
 AutoResetWrapper.step()

 		
 ObsCastWrapper

 		
 ObsCastWrapper.__init__()

 		
 ObsCastWrapper.reset()

 		
 ObsCastWrapper.step()

 		
 get_gym_max_episode_steps()

 		
 grid_transition_fn()

 		
 make_env_no_wrappers()

 		
 one_hot_encoding()

 		
 sample_distribution()

 		
 Helpers for unit-testing environments

_static/minus.png

_static/plus.png

_static/file.png

