
seals

Center for Human-Compatible AI

Oct 28, 2022

USER GUIDE

1 Installation Instructions 3

2 Diagnostic Tasks 5

3 Renovated Environments 7

4 Base Environments 9

5 Utilities 11

6 Helpers for unit-testing environments 13

7 Citing seals 15

8 Indices and tables 17

Python Module Index 19

Index 21

i

ii

seals

The Suite of Environments for Algorithms that Learn Specifications, or seals, is a toolkit for evaluating specification
learning algorithms, such as reward or imitation learning. The environments are compatible with Gym, but are designed
to test algorithms that learn from user data, without requiring a procedurally specified reward function.

There are two types of environments in seals:

• Diagnostic Tasks which test individual facets of algorithm performance in isolation.

• Renovated Environments, adaptations of widely-used benchmarks such as MuJoCo continuous control tasks to
be suitable for specification learning benchmarks. In particular, this involves removing any side-channel sources
of reward information (such as episode boundaries, the score appearing in the observation, etc) and including all
the information needed to compute the reward in the observation space.

seals is under active development and we intend to add more categories of tasks soon.

USER GUIDE 1

https://github.com/openai/gym/

seals

2 USER GUIDE

CHAPTER

ONE

INSTALLATION INSTRUCTIONS

To install the latest release from PyPi, run:

pip install seals

We make releases periodically, but if you wish to use the latest version of the code, you can always install directly from
Git master:

pip install git+https://github.com/HumanCompatibleAI/seals.git

seals has optional dependencies needed by some subset of environments. In particular, to use MuJoCo environments,
you will need to install MuJoCo 1.5 and then run:

pip install seals[mujoco]

You may need to install some other binary dependencies: see the instructions in Gym and mujoco-py for further infor-
mation.

You can also use our Docker image which includes all necessary binary dependencies. You can either build it from the
Dockerfile, or by downloading a pre-built image:

docker pull humancompatibleai/seals:base

3

http://www.mujoco.org/
https://github.com/openai/gym
https://github.com/openai/mujoco-py

seals

4 Chapter 1. Installation Instructions

CHAPTER

TWO

DIAGNOSTIC TASKS

Diagnostic tasks test individual facets of algorithm performance in isolation.

2.1 Branching

Gym ID: seals/Branching-v0

2.2 EarlyTerm

Gym ID: seals/EarlyTermPos-v0 and seals/EarlyTermNeg-v0

2.3 InitShift

Gym ID: seals/InitShiftTrain-v0 and seals/InitShiftTest-v0seals/EarlyTermPos-v0

2.4 LargestSum

Gym ID: seals/LargestSum-v0

2.5 NoisyObs

Gym ID: seals/NoisyObs-v0

2.6 Parabola

Gym ID: seals/Parabola-v0

5

seals

2.7 ProcGoal

Gym ID: seals/ProcGoal-v0

2.8 RiskyPath

Gym ID: seals/RiskyPath-v0

2.9 Sort

Gym ID: seals/Sort-v0

6 Chapter 2. Diagnostic Tasks

CHAPTER

THREE

RENOVATED ENVIRONMENTS

These environments are adaptations of widely-used reinforcement learning benchmarks from Gym, modified to be
suitable for benchmarking specification learning algorithms. In particular, we:

• Make episodes fixed length. Since episode termination conditions are often correlated with reward, variable-
length episodes provide a side-channel of reward information that algorithms can exploit. Critically, episode
boundaries do not exist outside of simulation: in the real-world, a human must often “reset” the RL algorithm.

Moreover, many algorithms do not properly handle episode termination, and so are biased towards shorter or
longer episode boundaries. This confounds evaluation, making some algorithms appear spuriously good or bad
depending on if their bias aligns with the task objective.

For most tasks, we make the episode fixed length simply by removing the early termination condition. In some
environments, such as MountainCar, it does not make sense to continue after the terminal state: in this case, we
make the terminal state an absorbing state that is repeated until the end of the episode.

• Ensure observations include all information necessary to compute the ground-truth reward function. For some
environments, this has required augmenting the observation space. We make this modification to make RL and
specification learning of comparable difficulty in these environments. While in general both RL and specification
learning may need to operate in partially observable environments, the observations in these relatively simple
environments were typically engineered to make RL easy: for a fair comparison, we must therefore also provide
reward learning algorithms with sufficient features to recover the reward.

In the future, we intend to add Atari tasks with the score masked, another reward side-channel.

3.1 Classic Control

3.1.1 CartPole

Gym ID: seals/CartPole-v0

3.1.2 MountainCar

Gym ID: seals/MountainCar-v0

7

https://github.com/openai/gym
https://www.youtube.com/watch?time_continue=125&v=vw3mGAlsT2U
https://arxiv.org/abs/1809.02925

seals

3.2 MuJoCo

3.2.1 Ant

Gym ID: seals/Ant-v0

3.2.2 HalfCheetah

Gym ID: seals/HalfCheetah-v0

3.2.3 Hopper

Gym ID: seals/Hopper-v0

3.2.4 Humanoid

Gym ID: seals/Humanoid-v0

3.2.5 Swimmer

Gym ID: seals/Swimmer-v0

3.2.6 Walker2d

Gym ID: seals/Walker2d-v0

8 Chapter 3. Renovated Environments

CHAPTER

FOUR

BASE ENVIRONMENTS

9

seals

10 Chapter 4. Base Environments

CHAPTER

FIVE

UTILITIES

Miscellaneous utilities.

class seals.util.AbsorbAfterDoneWrapper(env, absorb_reward=0.0, absorb_obs=None)
Bases: Wrapper

Transition into absorbing state instead of episode termination.

When the environment being wrapped returns done=True, we return an absorbing observation. This wrapper
always returns done=False.

A convenient way to add absorbing states to environments like MountainCar.

__init__(env, absorb_reward=0.0, absorb_obs=None)
Initialize AbsorbAfterDoneWrapper.

Parameters

• env – The wrapped Env.

• absorb_reward – The reward returned at the absorb state.

• absorb_obs – The observation returned at the absorb state. If None, then repeat the final
observation before absorb.

reset(*args, **kwargs)
Reset the environment.

step(action)
Advance the environment by one step.

This wrapped step() always returns done=False.

After the first done is returned by the underlying Env, we enter an artificial absorb state.

In this artificial absorb state, we stop calling self.env.step(action) (i.e. the action argument is entirely ig-
nored) and we return fixed values for obs, rew, done, and info. The values of obs and rew depend on
initialization arguments. info is always an empty dictionary.

class seals.util.AutoResetWrapper(env)
Bases: Wrapper

Hides done=True and auto-resets at the end of each episode.

step(action)
When done=True, returns done=False instead and automatically resets.

When an automatic reset happens, the observation from reset is returned, and the overridden observation
is stored in info[“terminal_observation”].

11

seals

class seals.util.ObsCastWrapper(env, dtype)
Bases: Wrapper

Cast observations to specified dtype.

Some external environments return observations of a different type than the declared observation space. Where
possible, this should be fixed upstream, but casting can be a viable workaround – especially when the returned
observations are higher resolution than the observation space.

__init__(env, dtype)
Builds ObsCastWrapper.

Parameters

• env – the environment to wrap.

• dtype – the dtype to cast observations to.

reset()

Returns reset observation, cast to self.dtype.

step(action)
Returns (obs, rew, done, info) with obs cast to self.dtype.

seals.util.get_gym_max_episode_steps(env_name)
Get the max_episode_steps attribute associated with a gym Spec.

Return type
Optional[int]

seals.util.grid_transition_fn(state, action, x_bounds=(-inf, inf), y_bounds=(-inf, inf))
Returns transition of a deterministic gridworld.

Agent is bounded in the region limited by x_bounds and y_bounds, ends inclusive.

(0, 0) is interpreted to be top-left corner.

Actions: 0: Right 1: Down 2: Left 3: Up 4: Stay put

seals.util.make_env_no_wrappers(env_name, **kwargs)
Gym sometimes wraps envs in TimeLimit before returning from gym.make().

This helper method builds directly from spec to avoid this wrapper.

Return type
Env

seals.util.one_hot_encoding(pos, size)
Returns a 1-D hot encoding of a given position and size.

Return type
ndarray

seals.util.sample_distribution(p, random)
Samples an integer with probabilities given by p.

Return type
int

12 Chapter 5. Utilities

CHAPTER

SIX

HELPERS FOR UNIT-TESTING ENVIRONMENTS

13

seals

14 Chapter 6. Helpers for unit-testing environments

CHAPTER

SEVEN

CITING SEALS

To cite this project in publications:

@misc{seals,
author = {Adam Gleave and Pedro Freire and Steven Wang and Sam Toyer},
title = {{seals}: Suite of Environments for Algorithms that Learn Specifications},
year = {2020},
publisher = {GitHub},
journal = {GitHub repository},
howpublished = {\url{https://github.com/HumanCompatibleAI/seals}},

}

15

seals

16 Chapter 7. Citing seals

CHAPTER

EIGHT

INDICES AND TABLES

• genindex

• modindex

• search

17

seals

18 Chapter 8. Indices and tables

PYTHON MODULE INDEX

s
seals.util, 11

19

seals

20 Python Module Index

INDEX

Symbols
__init__() (seals.util.AbsorbAfterDoneWrapper

method), 11
__init__() (seals.util.ObsCastWrapper method), 12

A
AbsorbAfterDoneWrapper (class in seals.util), 11
AutoResetWrapper (class in seals.util), 11

G
get_gym_max_episode_steps() (in module seals.util),

12
grid_transition_fn() (in module seals.util), 12

M
make_env_no_wrappers() (in module seals.util), 12
module

seals.util, 11

O
ObsCastWrapper (class in seals.util), 11
one_hot_encoding() (in module seals.util), 12

R
reset() (seals.util.AbsorbAfterDoneWrapper method),

11
reset() (seals.util.ObsCastWrapper method), 12

S
sample_distribution() (in module seals.util), 12
seals.util

module, 11
step() (seals.util.AbsorbAfterDoneWrapper method), 11
step() (seals.util.AutoResetWrapper method), 11
step() (seals.util.ObsCastWrapper method), 12

21

	Installation Instructions
	Diagnostic Tasks
	Branching
	EarlyTerm
	InitShift
	LargestSum
	NoisyObs
	Parabola
	ProcGoal
	RiskyPath
	Sort

	Renovated Environments
	Classic Control
	CartPole
	MountainCar

	MuJoCo
	Ant
	HalfCheetah
	Hopper
	Humanoid
	Swimmer
	Walker2d

	Base Environments
	Utilities
	Helpers for unit-testing environments
	Citing seals
	Indices and tables
	Python Module Index
	Index

